Ensemble Feature Selection: Consistent Descriptor Subsets for Multiple QSAR Models
نویسندگان
چکیده
Selecting a small subset of descriptors from a large pool to build a predictive quantitative structure-activity relationship (QSAR) model is an important step in the QSAR modeling process. In general, subset selection is very hard to solve, even approximately, with guaranteed performance bounds. Traditional approaches employ deterministic or stochastic methods to obtain a descriptor subset that leads to an optimal model of a single type (such as linear regression or a neural network). With the development of ensemble modeling approaches, multiple models of differing types are individually developed resulting in different descriptor subsets for each model type. However, it is advantageous, from the point of view of developing interpretable QSAR models, to have a single set of descriptors that can be used for different model types. In this paper, we describe an approach to the selection of a single, optimal, subset of descriptors for multiple model types. We apply this approach to three data sets, covering both regression and classification, and show that the constraint of forcing different model types to use the same set of descriptors does not lead to a significant loss in predictive ability for the individual models considered. In addition, interpretations of the individual models developed using this approach indicate that they encode similar structure-activity trends.
منابع مشابه
Visual analytics in cheminformatics: user-supervised descriptor selection for QSAR methods
BACKGROUND The design of QSAR/QSPR models is a challenging problem, where the selection of the most relevant descriptors constitutes a key step of the process. Several feature selection methods that address this step are concentrated on statistical associations among descriptors and target properties, whereas the chemical knowledge is left out of the analysis. For this reason, the interpretabil...
متن کاملA novel topological descriptor based on the expanded wiener index: Applications to QSPR/QSAR studies
In this paper, a novel topological index, named M-index, is introduced based on expanded form of the Wiener matrix. For constructing this index the atomic characteristics and the interaction of the vertices in a molecule are taken into account. The usefulness of the M-index is demonstrated by several QSPR/QSAR models for different physico-chemical properties and biological activities of a large...
متن کاملSequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR
Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...
متن کاملQSAR models to predict physico-chemical Properties of some barbiturate derivatives using molecular descriptors and genetic algorithm- multiple linear regressions
In this study the relationship between choosing appropriate descriptors by genetic algorithm to the Polarizability (POL), Molar Refractivity (MR) and Octanol/water Partition Coefficient (LogP) of barbiturates is studied. The chemical structures of the molecules were optimized using ab initio 6-31G basis set method and Polak-Ribiere algorithm with conjugated gradient within HyperChem 8.0 environ...
متن کاملSequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR
Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of chemical information and modeling
دوره 47 3 شماره
صفحات -
تاریخ انتشار 2007